Everyone Python
3-4 Hours
Then, We Can Start Python Programming
Python Code
Readability is At The Heart of Python Design.
- Simple is Better Than Complex...
- Short is Better Than Long...
- Explict is Better Than Implicit...
- Beautiful is Better Than Ugly...
- Readability Counts...
Code Style
Naming Conventions
Variables, functions, methods, packages, modules :
lower_case_with_underscores
Classes and Exceptions :
CapWords
Private methods :
_single_leading_underscore(self, ...)
Constants :
ALL_CAPS_WITH_UNDERSCORES
Avoid one-letter variables :
l, O, I
Avoid Redundant Labeling
Yes
import audio
core = audio.Core()
controller = audio.Controller()
No
import audio
core = audio.AudioCore()
controller = audio.AudioController()
Prefer "Reverse Notation"
Yes
elements = ...
elements_active = ...
elements_defunct = ...
No
elements = ...
active_elements = ...
defunct_elements ...
Line Length : Don't Stress Over 80-100 Characters
# Use parentheses for line continuations.
wiki = (
"The Colt Python is a .357 Magnum caliber revolver formerly "
"manufactured by Colt's Manufacturing Company of Hartford, "
"Connecticut. It is sometimes referred to as a Combat Magnum "
"same year as Smith & Wesson's M29 .44 Magnum."
)
30 - 30 Principle
A function should never exceed 30 lines.
A class can contain at most 30 methods.
Google Comment Style - Function
def func(arg1, arg2, arg3=None):
""" Intro line
Rant on here. Make sure it's at least 3-line long (j/k)
Args:
arg1: An argument
arg2: Another argument
arg3: optional argument
Returns:
Describe returned value(s) here
Raises:
Error
"""
pass
Google Comment Style - Class
class SampleClass(object):
""" Summary of class here.
Longer class information....
Longer class information....
Attributes:
likes_spam: A boolean indicating if we like SPAM or not.
eggs: An integer count of the eggs we have laid.
"""
def __init__(self, likes_spam=False):
"""Inits SampleClass with blah."""
self.likes_spam = likes_spam
self.eggs = 0
def public_method(self):
"""Performs operation blah."""
PEP 8 Python Style Guide
A style guide is to improve the readability of code and
make it consistent across the wide spectrum of Python code
-
Code Layout
- # Indentation
- # Maximum Line Length
- # Should a Line Break Before or After a Binary Operator?
- # Blank Lines
- # Imports
- # ...
-
Naming Conventions
- # Names to Avoid
- # Class Names
- # Global Variable Names
- # Function and Parameter Names
- # Constants
- # ...
-
Comments
- # Block Comments.
- # Inline Comments.
- # Documentation Strings
- # ...
-
Others
- # When to Use Trailing Commas.
- # Whitespace in Expressions and Statements
- # String Quotes
- # ...
Pythonic Code
What is Pythonic Code ?
The Way We Explore The Feature of Python Language
to produce Clear, Concise and Maintainable Code
Pythonic Code ? Yes !
Transforming Code into Beautiful, Idiomatic and Concise Python

Call a function until a sentinel value
lines = []
while True:
line = f.readline()
if line == '':
break
lines.append(line)
Better Code :
lines = [line for line in iter(f.readline, '')]
iter takes two arguments. The first you call over and over again and the second is a sentinel value.
Pythonic Code
Making The Program More Efficient
Dictionary For Performance
What are the difference between two algorithms ?
data_list = [...] # len = 500, 000
interesting_points = [...] # len = 100
for i in interesting_ids:
point = find_point_by_id_in_list(data_list, i)
interesting_points.append(point)
data_lookup = {...} # len = 500, 000
interesting_points = [...] # len = 100
for i in interesting_ids:
point = data_lookup(data_list, i)
interesting_points.append(point)
High-Performance Container Datatypes
namedtuple() |
factory function for creating tuple subclasses with named fields |
New in version 2.6. |
deque |
list-like container with fast appends and pops on either end |
New in version 2.4. |
Counter |
dict subclass for counting hashable objects |
New in version 2.7. |
OrderedDict |
dict subclass that remembers the order entries were added |
New in version 2.7. |
defaultdict |
dict subclass that calls a factory function to supply missing values |
New in version 2.5. |
Memory Efficiency with Slots
Custom types store their data in individualized, dynamic dictionaries via self.__dict__. Using __slots__ to limit available attribute names and move the name/key storage outside the instance to a type level can significantly improve memory usage.
class ImmutableThing:
__slots__ = ['a', 'b', 'c']
def __init__(self, a, b, c):
self.a = a
self.b = b
self.c = c
Pythonic Code
Efficient Build-In Tools
Bisect for Quick Search
Bisect provides support for maintaining a list in sorted order without having to sort the list after each insertion.
import bisect
import random
# Reset the seed
random.seed(1)
# Use bisect_left and insort_left.
l = []
for i in range(1, 5):
r = random.randint(1, 100)
position = bisect.bisect_left(l, r)
bisect.insort_left(l, r)
print '%2d %2d' % (r, position), l
$ python bisect_example.py
14 0 [14]
85 1 [14, 85]
77 1 [14, 77, 85]
26 1 [14, 26, 77, 85]
50 2 [14, 26, 50, 77, 85]
Pickle For Fast Object Serialization
import pickle
a = A_VERY_LARGE_OBJECT
with open('filename.pickle', 'wb') as handle:
pickle.dump(a, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open('filename.pickle', 'rb') as handle:
b = pickle.load(handle)
print(a == b)
Array Serialization
from array import array
from random import random
floats = array('d', (random() for i in range(10**7)))
fp = open('floats.bin', 'wb')
floats.tofile(fp)
fp.close()
floats2 = array('d')
fp = open('floats.bin', 'rb')
floats2.fromfile(fp, 10**7)
fp.close()
Pythonic Code
Taking The Advantages of Decorators
What is Decorator ?
You Might Have Used Decorators
Even Without Knowing It
from flask import Flask
app = Flask(__name__)
@app.route("/")
def hello():
return "Hello World!"
from functools import lru_cache
@lru_cache(maxsize=None)
def fib(n):
if n < 2:
return n
return fib(n-1) + fib(n-2)
Decorator is Used To Modify The Inner Function
The Following Three Codes Have The Same Effect.
# State, before defining f, that a_decorator will be applied to it.
@a_decorator
def f(...):
...
def f(...):
...
# After defining f, apply a_decorator to it.
f = a_decorator(f)
def a_decorator():
...
def f(...):
...
...
return f
Print Decorated Function's Input Output
def deco(func):
def inner(*args):
print('Input :', args)
output = func(*args)
print('Output:', output)
return output
return inner
@deco
def add(a, b):
return a + b
>>> add(1, 2)
Input : (1, 2)
Output: 3
Example 1 - Use Decorator to Auto Register
Input, Output and Execution Time
import time
def timer(func):
def clock(*args):
t0 = time.perf_counter()
result = func(*args)
elapsed = time.perf_counter() - t0
name = func.__name__
arg_str = ', '.join(repr(arg) for arg in args)
print('[%0.8fs] %s(%s) -> %r' % (elapsed, name, arg_str, result))
return result
return clock
Example 1 - Use Decorator to Auto Register
Input, Output and Execution Time
import time
from timer import timer
@timer
def factorial(n):
return 1 if n < 2 else n*factorial(n-1)
if __name__=='__main__':
factorial(4)
$ python3 clockdeco_demo.py
[0.00000191s] factorial(1) -> 1
[0.00004911s] factorial(2) -> 2
[0.00008488s] factorial(3) -> 6
[0.00013208s] factorial(4) -> 24
Example 2 - Use Decorator to Make Class Singleton
class Singleton:
_singletons = dict()
def __init__(self, decorated):
self._decorated = decorated
def getInstance(self):
key = self._decorated.__name__
try:
return Singleton._singletons[key]
except KeyError:
Singleton._singletons[key] = self._decorated()
return Singleton._singletons[key]
def __call__(self):
raise Exception(
'Singletons must be accessed through the `getInstance` method.')
Example 2 - Use Decorator to Make Class Singleton
@Singleton
class Foo:
def __init__(self):
print('Foo created')
def bar(self, obj):
print(obj)
foo = Foo() # Wrong, raises Exception
foo = Foo.getInstance()
goo = Foo.getInstance()
print(goo is foo) # True
foo.bar('Hello, world! I m a singleton.')
Python Meta Class Functions
Name | Description |
---|---|
__new__ | The real function to create an object. |
__init__ | Initialize newly created object. |
__call__ | Make the class callable like a function. |
Python Meta Class Functions
class Foo:
def __new__(cls, *args, **kwargs):
print('Calling __new__')
return super(Foo, cls).__new__(cls)
def __init__(self, a):
print('Calling __init__')
self.a = a
def __call__(self, *args, **kwargs):
print('Calling __call__')
print(self.a)
>>> f = Foo(1)
Calling __new__
Calling __init__
>>> f()
Calling __call__
1
Pythonic Code
Meta Programming
Example I : __len__ & __getitem__ (1)
import collections
Card = collections.namedtuple('Card', ['rank', 'suit'])
class FrenchDeck:
ranks = [str(n) for n in range(2, 11)] + list('JQKA')
suits = 'spades diamonds clubs hearts'.split()
def __init__(self):
self._cards = [Card(rank, suit) for suit in self.suits
for rank in self.ranks]
def __len__(self):
return len(self._cards)
def __getitem__(self, position):
return self._cards[position]
Example I : __len__ & __getitem__ (2)
>>> deck = FrenchDeck()
>>> len(deck)
52
>>> deck[0]
Card(rank='2', suit='spades')
>>> deck[-1]
Card(rank='A', suit='hearts')
>>> from random import choice
>>> choice(deck)
Card(rank='3', suit='hearts')
>>> choice(deck)
Card(rank='K', suit='spades')
>>> choice(deck)
Card(rank='2', suit='clubs')
Example I : __len__ & __getitem__ (3)
>>> deck[:3]
[Card(rank='2', suit='spades'), Card(rank='3', suit='spades'),
Card(rank='4', suit='spades')]
>>> deck[12::13]
[Card(rank='A', suit='spades'), Card(rank='A', suit='diamonds'),
Card(rank='A', suit='clubs'), Card(rank='A', suit='hearts')]
>>> for card in deck:
... print(card)
Card(rank='2', suit='spades')
Card(rank='3', suit='spades')
Card(rank='4', suit='spades')
...
>>> for card in reversed(deck):
... print(card)
Card(rank='A', suit='hearts')
Card(rank='K', suit='hearts')
Card(rank='Q', suit='hearts')
...
Example II : __iter__
class Article:
def __init__(self, sentences):
self.sentences = sentences
def __iter__(self):
return (sentence for sentence in self.sentences)
class Sentence:
def __init__(self, words):
self.words = words
def __iter__(self):
return (word for word in self.words)
...
>>> for sentence in article:
>>> ... for word in sentence:
>>> ....... print(word)
Example III : __repr__
from array import array
import math
class Vector2d:
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
def __iter__(self):
return (i for i in (self.x, self.y))
def __repr__(self):
class_name = type(self).__name__
return '{}({!r}, {!r})'.format(class_name, *self)
...
>>> v = Vector2d(1, 2)
>>> print(v)
Vector2d(1.0, 2.0)
Object Oriented Design
Why is This Code Bad Designed ?
class UserSettings:
def __init__(self, user):
self.user = user
def change_setting(self, setting):
if self.verify_credential():
# do change setting
pass
def verify_credential(self):
# do verify credential
pass
Single Responsibility Principle
There should never be more than one reason for a class to change
Single Responsibility Principle - Good Code
class UserSettings:
def __init__(self, user):
self.user = user
self.auth = UserAuth(user)
def change_setting(self, setting):
if self.auth.verify_credential():
# do change setting
pass
class UserAuth:
def __init__(self, user):
self.user = user
def verify_credential(self):
# do verify credential
pass
Is This A Good Code ?
class Rectangle:
def __init__(self, width, height):
self.width = width
self.height = height
class AreaCalculator:
def compute_area(self, shapes):
""" Compute the sum area of a shape collection """
area = 0.0
for shape in shapes:
area += shape.width * shape.height
return area
Possible Extension 1
Collection needs to contain circle ...
A Quick Solution Based On Previous Design
class Rectangle:
...
class Circle:
def __init__(self, radius):
self.radius = radius
class AreaCalculator:
def compute_area(self, shapes):
""" Compute the sum area of a shape collection """
area = 0.0
for shape in shapes:
# Check type here
if isinstance(shape, Rectangle):
area += shape.width * shape.height
else:
area += 3.14 * shape.radius * shape.radius
return area
Possible Extension 2
What if the collection needs to contain triangle, diamond, octagon etc ... ?
Open / Closed Principle
Software entities should be open for extension, but closed for modification
Open / Closed Principle - Good Code
from abc import ABC, abstractmethod
class Shape(ABC):
@abstractmethod
def area(self):
pass
class Rectangle(Shape):
def __init__(self, width, height):
self.width = width
self.height = height
def area(self):
return self.width * self.height
class Circle(Shape):
def __init__(self, radius):
self.radius = radius
def area(self):
return self.radius * self.radius * 3.14
class AreaCalculator:
def compute_area(self, shapes):
""" Compute the sum area of a shape collection """
area = 0.0
for shape in shapes:
area += shape.area()
return area
Is This A Good Design ?
from abc import ABC, abstractmethod
class IEmployee(ABC):
@abstractmethod
def work(self):
pass
@abstractmethod
def eat(self):
pass
class Researcher(IEmployee):
def work(self):
pass
def eat(self):
pass
class Programmer(IEmployee):
def work(self):
pass
def eat(self):
pass
Interface Segregation Principle
Clients should not be forced to depend upon interfaces that they do not use.
Interface Segregation Principle - Good Code
from abc import ABC, abstractmethod
class Workable(ABC):
@abstractmethod
def work(self):
pass
class Feedable(ABC):
@abstractmethod
def eat(self):
pass
class Researcher(Workable, Feedable):
def work(self):
pass
def eat(self):
pass
class Programmer(Workable, Feedable):
def work(self):
pass
def eat(self):
pass
Interface Segregation Principle - A Real Example

Composition Over Inheritance - Bad Implementation

OO Design Principles
-
SRP
Single Responsibility PrincipleThere should never be more than one reason for a class to change
-
OCP
Open / Closed PrincipleSoftware entities should be open for extension, but closed for modification
-
ISP
Interface Segregation PrincipleClients should not be forced to depend upon interfaces that they do not use.
Python Inheritance
1. Do Not Inherit From Build-In Data Type.
# Bad Implementation
class DoppelDict(dict):
def __setitem__(self, key, value):
super().__setitem__(key, [value] * 2)
>>> dd = DoppelDict(one=1)
>>> dd
{'one': 1}
>>> dd['two'] = 2
>>> dd
{'one': 1, 'two': [2, 2]}
>>> dd.update(three=3)
>>> dd
{'three': 3, 'one': 1, 'two': [2, 2]}
2. Mixin for Multi-Inheritances
Example I - A General Repr Mixin
import reprlib
class ReprLibMixin(object):
def __repr__(self):
return "<{} {attr}>".format(
self.__class__.__name__,
attr=" ".join("{}={}".format(k, reprlib.repr(v)) for k, v in sorted(self.__dict__.items())),
)
class Word(ReprLibMixin):
def __init__(self, text, sentence_index, article_index, pos_tag):
self.text = text
self.sentence_index = sentence_index
self.article_index = article_index
self.pos_tag = pos_tag
Example II - Comparable Mixin
class Comparable(object):
def __ne__(self, other):
return not (self == other)
def __lt__(self, other):
return self <= other and (self != other)
def __gt__(self, other):
return not self <= other
def __ge__(self, other):
return self == other or self > other
class Integer(Comparable):
def __init__(self, i):
self.i = i
class Char(Comparable):
def __init__(self, c):
self.c = c
3. Enrich Constructor With
Static Factory Method
class Sentence:
def __init__(words, article_indices, sentence_indices, ...):
pass
@staticmethod
def fromText(sentence_str):
pass
@staticmethod
def fromLtpJson(ltp_json):
pass
Performance Tuning
Step 1: Make A Better Algorithmn
- 1. Binary Search
- 2. Quick Sort
- 3. Data Structure: BST, Trie, Interval Tree, Stack etc.
- 4. Dynamic Programming (Tabulation, Memoizatation)
- 5. Save Previous Results in Dict
- ...
Step 2: Cache
from functools import lru_cache
@lru_cache(maxsize=None)
def fib(n):
if n <= 0:
print("Incorrect input")
elif n == 1:
return 0
elif n == 2:
return 1
else:
return fib(n-1) + fib(n-2)
Step 3: Python Coroutine
import aiohttp
import asyncio
URL = 'https://www.youtube.com/'
async def job(sess):
resp = await sess.get(URL)
return str(resp.url)
async def main(loop):
async with aiohttp.ClientSession() as sess:
tasks = [loop.create_task(job(sess)) for _ in range(2)]
finished, unfinished = await asyncio.wait(tasks)
for r in finished:
print(r.result())
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
loop.close()
Step 4: Python Multi Threading
from multiprocessing import Pool
def f(x):
return x*x
if __name__ == '__main__':
p = Pool(5)
print(p.map(f, [1, 2, 3]))
Step 5: Others...
- 1. Cython
- 2. numba
- 3. PyPI
- 4. f2py
- ...
Profiling
import cProfile
import re
cProfile.run('re.compile("foo|bar")')
197 function calls (192 primitive calls) in 0.002 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.001 0.001 :1()
1 0.000 0.000 0.001 0.001 re.py:212(compile)
1 0.000 0.000 0.001 0.001 re.py:268(_compile)
1 0.000 0.000 0.000 0.000 sre_compile.py:172(_compile_charset)
1 0.000 0.000 0.000 0.000 sre_compile.py:201(_optimize_charset)
4 0.000 0.000 0.000 0.000 sre_compile.py:25(_identityfunction)
3/1 0.000 0.000 0.000 0.000 sre_compile.py:33(_compile)